Phân loại tế bào gốc Tế bào gốc

Tế bào gốc phôi thai (Embryonic stem cells)

Tế bào gốc phôi thai ở người

Tế bào phôi (ES) là tế bào của khối lượng tế bào bên trong của phôi nang, phôi giai đoạn đầu.[13] Phôi người đạt đến giai đoạn phôi nang giai đoạn 4-5 ngày sau khi thụ tinh, vào thời điểm đó chúng chứa 50-150 tế bào. Các tế bào ES là dạng tế bào đa năng pluripotent và biệt hoá cũng như phát triển thành tất cả các tế bào chuyên biệt của ba lớp mầm sơ cấp: ectoderm, endoderm và Mesoderm. Nói cách khác, chúng có thể phát triển thành từng loại tế bào trong hơn 200 loại ở cơ thể người trưởng thành. Chúng không đóng góp vào màng phôi ngoài hoặc nhau thai.

Trong quá trình hình thành và phát triển phôi thai, khối lượng tế bào trong phôi được liên tục nhân lên về số lượng và trở nên chuyên biệt về đặc tính. Ví dụ như một phần ngoại bì (ectoderm) của phôi sẽ biệt hoá thành "neurecderm"- sẽ trở thành hệ thần kinh trung ương (Central Nervous System) trong tương lai.[14] Sau đó, quá trình tạo tế bào thần kinh sẽ hình thành các dây thần kinh từ neurectoderm. Ở giai đoạn tạo dây thần kinh, một phần tế bào tiền thân sẽ trở thành "tế bào máu" của não. Trong quá trình phát triển này, các tế bào chính của hệ thần kinh trung ương được coi như là tế bào gốc thần kinh. Các tế bào gốc thần kinh này là những tế bào đa năng pluripotent, chúng có thể tạo thành rất nhiều dạng neuron thần kinh khác nhau, mỗi loại sẽ có những biểu hiện gene cũng như hình thái và cấu trúc chức năng riêng biệt. Quá trình hình thành các neuron thần kinh từ tế bào gốc được gọi là neurogenesis. Một ví dụ điển hình của tế bào gốc thần kinh xuyên tâm (radial glial cell), loại tế bào có hình thái lưỡng cực đặc trưng cũng như sở hữu các tính chất của dòng tế bào glial, đáng chú ý nhất là biểu hiện của glial fibrilary acidic protein (GFAP).[15][16] Các tế bào thần kinh sẽ được giới hạn biệt hoá chỉ thành các dòng tế bào thần kinh (neurons, atrocytes và oligodendrocytes).[14]

Gần như tất cả các nghiên cứu cho đến nay đều sử dụng tế bào phôi thai chuột (mES) hoặc tế bào phôi thai người (hES) được lấy từ khối lượng tế bào bên trong phôi nang. Cả hai đều có các tính chất thiết yếu của tế bào gốc, tuy rằng chúng vẫn cần các điều kiện môi trường rất khác nhau để duy trì trạng thái không biệt hoá. Tế bào gốc của chuột được nuôi cấy trên một lớp thạch gelatin bao gồm cả yếu tố ức chế bạch cầu (Leukemia Inhibitory Factor) trong serum. Một hỗn hợp bao gồm các chất gây ức chế đối với GSK3B và đường truyền tín hiệu MAPK/ERK (được gọi là 2i), được biết đến có khả năng duy trì tính đa năng của tế bào gốc.[17] Các tế bào gốc của người được nuôi cấy trên một lớp nguyên bào sợi phôi của chuột (MEFs) và cần sự có mặt của yếu tố tăng trưởng nguyên bào sợi cơ bản (bFGF hoặc FGF-2).[18] Nếu không có điều kiện nuôi cấy tối ưu hoặc thao tác di truyền phù hợp, tế bào gốc phôi sẽ nhanh chóng biệt hoá.[19]

Tế bào gốc phôi thai của người được định nghĩa bởi sự biểu hiện của rất nhiều các yếu tố phiên mã và các protein bề mặt tế bào. Các yếu tố phiên mã như Oct-4, Nanog và Sox2 là mạng lưới điều hoà cốt lõi để đảm bảo sự biểu hiện của gene trong quá trình biệt hoá hay duy trì tính đa năng.[20] Bề mặt tế bào kháng nguyên được sử dụng phổ biến nhất để xác định các tế bào gốc phôi người là kháng nguyên glycolipids 3 và 4, cũng như các kháng nguyên keratan sunfat Tra-1-60 và Tra-1-81. Bằng cách sử dụng tế bào gốc phôi người để tạo ra các tế bào đã biệt hoá như tế bào thần kinh hoặc các tế bào tim trong phòng thí nghiệm, các nhà khoa học có thể tiếp cận các tế bào gốc trưởng thành (Adult stem cell) mà không cần lấy mô từ bệnh nhân. Sau đó, họ có thể nghiên cứu những tế bào trưởng thành đã biệt hoá này để thử và nắm bắt các biến chứng của bệnh tật, hoặc để nghiên cứu tế bào phản ứng với các thuốc mới tiềm ẩn. Định nghĩa phân tử của một tế bào gốc còn bao gồm nhiều loại protein hơn và vẫn tiếp tục là một chủ đề nghiên cứu.[21]

Hiện tại không có phương pháp điều trị nào sử dụng tế bào gốc phôi được chấp nhận. Thử nghiệm trên người được phê duyệt lần đầu tiên bởi Cơ quan Quản lý Thực phẩm và Dược phẩm Hoa Kỳ vào tháng 1 năm 2009.[22] Tuy nhiên, cuộc thử nghiệm trên người đã không được bắt đầu cho đến ngày 13 tháng 10 năm 2010 tại Atlanta để nghiên cứu tổn thương tủy sống. Vào ngày 14 tháng 11 năm 2011, công ty tiến hành thử nghiệm (Geron Corporation) đã thông báo ngừng phát triển các chương trình thí nghiệm tế bào gốc của họ.[23] Các tế bào gốc phôi nang (ES), là những tế bào đa năng, đòi hỏi các tín hiệu cụ thể để biệt hoá chính xác - nếu tiêm trực tiếp vào cơ thể khác, các tế bào ES sẽ biệt hoá thành nhiều loại tế bào khác nhau, gây ra một khối u ác tính. Việc biệt hoá các tế bào ES thành các tế bào có thể sử dụng được trong khi vẫn tránh được việc thải loại cấy ghép (transplant rejection) chỉ là một trong vài rào cản mà các nhà nghiên cứu phải đối mặt.[24] Do các lý do về đạo đức, nhiều quốc gia hiện đang có những hạn chế về nghiên cứu tế bào ES ở người hoặc sản xuất những dòng tế bào ES mới. Do khả năng tái tạo không giới hạn và tính đa năng, các tế bào gốc phôi vẫn là nguồn tiềm năng về mặt lý thuyết đối với y học trong việc tái tạo và thay thế mô bị tổn thương hoặc bệnh tật.[25]

Dòng tế bào gốc phôi thai được nuôi cấy từ các tế bào dẫn xuất từ mô ngoại phôi bì (epiblast) của khối lượng tế bào bên trong của một túi phôi. Túi phôi là giai đoạn sớm nhất của phôi, hình thành từ khoảng 4-5 ngày, và chứa khoảng từ 50-150 tế bào. Tế bào gốc phôi thai thuộc loại pruripotent và suốt quá trình phát triển có khả năng biệt hoá từ một trong 2 lớp phôi: ngoại bì (ectoderm), nội bì (endoderm) và trung bì (mesoderm). Ngoài ra, tế bào gốc phôi thai còn có thể phát triển thành một trong hơn 200 dạng tế bào của cơ thể trường thành nếu được kích thích đầy đủ và cần thiết. Chúng không can dự vào màng ngoài phôi hoặc nhau.

Tế bào gốc phôi người trên lớp nguyên bào phôi chuột

Tế bào gốc phôi thai ở người còn được xác định bằng sự hiện diện của nhiều yếu tố sao chép và protein bề mặt tế bào. Các yếu tố sao chép như Oct-4, Nanog và SOX2 tạo thành mạng điều hoà nhân, đảm bảo cho việc tiêu diệt các gen dẫn đến sự biệt hoá và duy trì tính chất pluripotent. Kháng nguyên bề mặt tế bào thường được dùng nhất để xác định tế bào gốc phôi thai là glycolipid SSEA3, SSEA4 và antigen sulfat keratan Tra-1-60 và Tra-1-81. Bằng cách sử dụng tế bào gốc phôi người để tạo ra các tế bào biệt hoá như tế bào thần kinh hoặc các tế bào cơ tim trong phòng thí nghiệm, các nhà khoa học có thể tiếp cận các tế bào trưởng thành mà không cần lấy mô từ bệnh nhân. Sau đó, họ có thể nghiên cứu những tế bào trưởng thành đã biệt hoá này để thử nghiệm và nắm bắt các biến chứng của bệnh tật, hoặc để nghiên cứu phản ứng của tế bào với các thuốc tiềm năng mới. Định nghĩa phân tử của một tế bào gốc bao gồm nhiều protein hơn và vẫn đang tiếp tục được nghiên cứu.[21]

Tế bào gốc phôi thai ở chuột được nhuộm bằng chất nhuộm huỳnh quang

Tế bào gốc bào thai

Các tế bào gốc nguyên thủy nằm trong các cơ quan của bào thai được gọi là tế bào gốc bào thai.[26] Có hai loại tế bào gốc bào thai:

1. Tế bào gốc nguyên thuỷ từ bào thai (Fetal proper stem cell) xuất phát từ mô của thai nhi, và thường được lấy sau quá trình phá thai. Những tế bào gốc này không phải là bất tử, nhưng có mức độ phân chia cao và đa dạng.

2. Tế bào gốc bào thai ngoài tử cung (Extraembryonic Fetal stem cell) xuất phát từ màng thừa của phôi, và thường không phân biệt với tế bào gốc người lớn. Các tế bào gốc này được thu nhặt sau khi sinh. Mặc dù các tế bào này không phải bất tử, nhưng là tế bào đa năng pluripotent và có mức độ phân chia tế bào cao.[27]

Tế bào gốc trưởng thành - Adult stem cell

Sự phân chia và biệt hóa của tế bào gốc

Tế bào gốc trưởng thành (Adult stem cell), còn được gọi là tế bào gốc sinh dưỡng (somatic), là tế bào gốc duy trì và sửa chữa các mô bị tổn thương.[28] Chúng có thể được tìm thấy ở trẻ em, cũng như người lớn.[29]

Các tế bào gốc người trưởng thành đa số hiếm và nói chung là nhỏ về số lượng, nhưng chúng có thể được tìm thấy ở trong máu dây rốn và ở các mô khác.[30] Tủy xương là nơi bao gồm phong phú các tế bào gốc trưởng thành [31], đã được sử dụng trong điều trị một số bệnh bao gồm xơ gan [32], thiếu máu cục bộ mạn tính [33] và suy tim giai đoạn cuối.[34] Số lượng tế bào gốc tủy xương giảm theo tuổi và lớn hơn ở nam giới so với nữ giới trong những năm sinh đẻ.[35] Hầu hết mọi nghiên cứu về tế bào gốc trưởng thành cho đến nay đều nhằm mục đích nắm bắt được tính tiềm năng (potency) và năng lực tự làm mới (self-renewal) của chúng.[36] Theo thời gian, các thương tổn DNA sẽ được tích tụ ở tế bào gốc và cả các tế bào khác ở môi trường bao quanh tế bào gốc. Sự tích tụ này lý giải cho sự rối loạn chức năng của tế bào gốc khi lão hóa (xem lý thuyết về sự lão hóa của DNA).[37]

Hầu hết các tế bào gốc người lớn đều bị hạn chế về khả năng biệt hoá (chúng là dạng tế bào multipotent) [38] và thường được gọi bởi nguồn gốc mô của chúng (tế bào gốc trung mô, tế bào gốc có nguồn gốc từ mỡ, tế bào gốc nội mô...).[39] Các tế bào Muse (multi-lineage differentiating stress enduring cells) là một loại tế bào gốc đa năng mới được phát hiện thấy trong các mô người trưởng thành, bao gồm cả chất béo, các nguyên bào sợi da, và tủy xương. Mặc dù các tế bào muse có thể nhận biết được bằng SSEA-3, một dấu hiệu của các tế bào gốc không biệt hoá và các dấu hiệu tế bào gốc trung mô nói chung như CD105. Trong quá trình nuôi cấy, các tế bào sẽ tạo ra những cụm có hình thái giống như các phôi cũng như biểu hiện gen, bao gồm các dấu hiệu nhận biết như Oct4, Sox2, và Nanog.[40]

Các phương pháp điều trị bằng tế bào gốc người trưởng thành đã được sử dụng thành công trong nhiều năm để điều trị bệnh bạch cầu và ung thư xương / máu liên quan đến việc cấy ghép tủy xương.[41] Các tế bào gốc người trưởng thành cũng được sử dụng trong ngành thú y để điều trị chấn thương dây chằng và dây chằng ở ngựa.[42]

Việc sử dụng các tế bào gốc người lớn trong nghiên cứu và điều trị không gây tranh cãi như việc sử dụng các tế bào gốc phôi vì sản xuất các tế bào gốc người trưởng thành không đòi hỏi phá huỷ phôi. Ngoài ra, trong những trường hợp tế bào người trưởng thành được thu nhận từ cùng cơ thể (một phương pháp tự ghép), nguy cơ thải loại sẽ không tồn tại. Do đó chính phủ Hoa Kỳ đang đầu tư rất nhiều vốn để cung cấp tài trợ cho nghiên cứu tế bào gốc người trưởng thành.[43]

Tế bào gốc dịch màng ối (Amniotic)

Các tế bào gốc đa năng cũng được tìm thấy trong dịch màng ối. Các tế bào gốc này rất hoạt hoá, có khả năng di chuyển rộng mà không cần nguồn dinh dưỡng, đặc biệt là không gây khối u. Tế bào gốc buồng ối là tế bào đa năng multipotent và có khả năng biệt hoá thành các dòng tế bào của các tuyến adipogenic, osteogenic, myogenic, endothelial, hepatic và nơ-ron thần kinh.[44] Tế bào gốc buồng ối hiện đang và sẽ là một chủ đề nghiên cứu rất hứa hẹn.

Sử dụng các tế bào gốc từ nước ối không còn mắc phải các phản đối về mặt đạo đức đối với việc sử dụng phôi người cho nghiên cứu. Giáo huấn Công giáo Rôma đã cấm việc sử dụng tế bào gốc phôi thai trong thử nghiệm; theo đó, tờ Vatican "Osservatore Romano" gọi là tế bào gốc buồng ối "tương lai của y học".[45]

Có thể thu thập các tế bào gốc nước ối cho các nhà tài trợ hoặc cho điều trị tự trị: ngân hàng tế bào gốc ối Hoa Kỳ đầu tiên [46][47] được khai trương vào năm 2009 tại Medford, MA bởi Tập đoàn Biocell Center [48][49][50] và cộng tác với nhiều bệnh viện và các trường đại học trên khắp thế giới.[51]

Tế bào gốc "vạn năng cảm ứng" (Induced Pluripotent Stem Cells- iPSC)

Tế bào gốc người lớn có những hạn chế về mặt tiềm năng; không giống như ESCs, chúng không thể phân biệt thành các tế bào từ cả ba lớp mầm. Như vậy, chúng được cho là tế bào đa năng multipotent.

Tuy nhiên, việc lập trình lại cho phép tạo ra các tế bào vạn năng pluripotent từ tế bào người trưởng thành. Điều quan trọng cần lưu ý rằng đây không phải là các tế bào gốc người trưởng thành, mà là các tế bào đã biệt hoá (ví dụ như tế bào biểu mô) được lập trình lại để làm phát sinh khả năng đa năng pluripotent của tế bào. Sử dụng tái lập trình di truyền (genetic reprogramming) với các protein phiên mã, các tế bào gốc đa năng với khả năng tương ứng tế bào gốc phôi ESC được tạo thành.[52][53][54] Các tế bào gốc iPSC lần đầu tiên được nghiên cứu và thử nghiệm thành công bởi Shinya Yamanaka và các đồng nghiệp của ông tại Đại học Kyoto.[55] Họ sử dụng 4 yếu tố phiên mã Oct3 / 4, Sox2, c-Myc, và Klf4 để tái lập trình các tế bào nguyên bào sợi chuột thành các tế bào vạn năng pluripotent.[52][56] Các nghiên cứu tiếp theo sử dụng những yếu tố này để tạo ra sự đa năng trong tế bào nguyên bào sợi người.[57] Junying Yu, James Thomson, và các đồng nghiệp của họ tại Đại học Wisconsin-Madison đã sử dụng một bộ các nhân tố khác nhau, bao gồm Oct4, Sox2, Nanog và Lin28, và thực hiện các thí nghiệm của họ bằng cách sử dụng các tế bào từ da người [49] [55]. Việc họ đã có thể lặp lại kết quả của Yamanaka chỉ ra rằng sự tạo tế bào gốc vạn năng pluripotency là hoàn toàn có thể.[58]

Điều quan trọng cần lưu ý là iPSC và ESCs không tương đương. Chúng có nhiều tính chất tương tự, ví dụ như tính đa năng và khả năng biệt hoá, sự biểu hiện của gen đa năng, mô hình biểu sinh (epigenetic patterns), cơ thể phôi và quá trình hình thành teratoma và sự hình thành chimer.[55][56] Tuy nhiên, tương tự không có nghĩa là chúng như nhau. Trong thực tế, có rất nhiều sự khác biệt giữa các thuộc tính này. Điều quan trọng là chromatin của iPSC dường như bị "đóng" hoặc bị methyl hóa hơn so với các ESCs.[55][56] Tương tự, mô hình biểu hiện gen giữa ESCs và iPSCs, hoặc thậm chí cả iPSCs đều có nguồn gốc khác nhau.[55] Có những câu hỏi về "sự hoàn chỉnh" của việc lập trình lại các tế bào gốc đa năng iPSC. Mặc dù vậy, việc biến tế bào người trưởng thành thành tế bào vạn năng pluripotent là khả thi.

Kết quả của sự thành công của những thí nghiệm này, Ian Wilmut, người đã giúp tạo ra động vật nhân bản đầu tiên - Chú cừu Dolly, đã tuyên bố rằng ông sẽ từ bỏ việc chuyển hạt nhân tế bào soma.[59]

Hơn nữa, các tế bào gốc iPSC mang lại nhiều ưu điểm trong điều trị. Giống như ESC, iPSC đều là những tế bào vạn năng pluripotent. Do đó chúng có khả năng biệt hoá rất cao; Về mặt lý thuyết, chúng có thể tạo ra bất kỳ tế bào nào trong cơ thể con người (nếu tế bào iPSC được tạo ra một cách "hoàn chỉnh").[55] Hơn nữa, không giống như ESCs, họ có khả năng cho phép các bác sĩ tạo ra một dòng tế bào gốc đa năng pluripotent cho từng bệnh nhân.[60] Trên thực tế, các mẫu máu đông lạnh có thể được sử dụng như một nguồn cung cấp tế bào gốc đa năng pluripotent, mở ra một con đường mới cho việc thu hoạch các tế bào có giá trị.[61] Các tế bào gốc đặc hiệu cho bệnh nhân cho phép sàng lọc các tác dụng phụ trước khi điều trị bằng thuốc, cũng như giảm nguy cơ thải loại trong cấy ghép tế bào.[60] Mặc dù vẫn còn nhiều hạn chế trong điều trị, việc sử dụng iPSCs trong điều trị y tế và nghiên cứu vẫn rất tiềm năng trong tương lai.

Ngoài ra, tế bào gốc còn có thể chia ra thành tế bào gốc nội sinh và ngoại sinh. Tế bào gốc nội sinh là các tế bào gốc có sẵn trong cơ thể chúng ta. Tế bào gốc ngoại sinh là các tế bào gốc được lấy ra từ cơ thể người cho, sau đó được sử dụng các phương pháp để tăng sinh trong phòng thí nghiệm, rồi được cấy ghép trở lại cơ thể người bệnh – phương pháp này còn được gọi là liệu pháp cấy ghép tế bào gốc ngoại sinh.

Tài liệu tham khảo

WikiPedia: Tế bào gốc http://med.stanford.edu/ http://stemcell.stanford.edu/about/Laboratories/we... http://xiphoid.biostr.washington.edu/fma/fmabrowse... http://www.closerlookatstemcells.org/learn-about-s... http://www.vietnamplus.vn/Home/Lap-ngan-hang-te-ba... https://www.unifr.ch/ifaa/Public/EntryPage/ViewTH/... https://www.medicalnewstoday.com/articles/323343.p... https://meshb.nlm.nih.gov/record/ui?ui=D013234 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC57950...